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Spatial variation in landscape attributes can account for much of the variability in water quality relative to land
use on its own. Such variation results from the coupling between thedominant processes governingwater quality,
namely hydrological, redox, and weathering and gradients in key landscape attributes, such as topography, geol-
ogy, and soil drainage.Despite the importance of ‘process-attribute’ gradients (PAG), fewwater qualitymodels ex-
plicitly account for their influence. Here a processes-based water quality modelling framework is presented that
more completely accounts for the role of landscape variability over water quality – Process-Attribute Mapping
(PoAM). Critically, hydrochemical measures form the basis for the identification and mapping of effective land-
scape attributes, producing PAG maps that attempt to replicate the natural landscape gradients governing each
dominant process. Application to the province of Southland (31,824 km2), New Zealand, utilised 12 existing
geospatial datasets and a total of 28,626 surfacewater, groundwater, spring, soilwater, and precipitation analyses
to guide the identification and mapping of 11 individual PAG. The ability of PAGs to replicate regional hydrolog-
ical, redox, and weathering gradients was assessed on the accuracy with which the hydrochemical indicators of
each dominant process (e.g. hydrological tracers, redox indicators) were estimated across 93 long-term surface
water monitoring sites (cross-validated R2 values of 0.75–0.95). Given hydrochemical evidence that PAGs repli-
cate actual landscape gradients governing the dominant processes, theywere combinedwith a land use intensity
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layer and used to estimate steady-state surfacewater quality. Cross-validated R2 values ranged between 0.81 and
0.92 for median total nitrogen, total oxidised nitrogen, total phosphorus and dissolved reactive phosphorus.
Models of particulate species E. coli and total suspended sediment, although reasonable (R2 0.72–0.73), were
less accurate, suggesting finer-grained land use, landscape attribute, and/or flow normalised measures are re-
quired to improve estimation.

© 2019 Published by Elsevier B.V.
1. Introduction

Water quality can vary spatially across the landscape, even when
there are similar environmental pressures. These differences occur be-
cause of natural spatial variation in landscape attributes (e.g. soil and
geology), which alter water composition through coupled physical,
chemical, and biological processes (Wright, 1988; Moldan and Černý,
1994; Clark and Fritz, 1997; Giller and Malmqvist, 1998; Kendall and
McDonnell, 1998; Krantz and Powars, 2000; Lydersen et al., 2004;
Doctor et al., 2008; McMahon and Chapelle, 2008; Gray et al., 2011;
Inamdar, 2011; Rissmann, 2011; Rissmann et al., 2015). Previous re-
search has shown that spatial variation in landscape attributes may ac-
count for the majority of the variability in water quality relative to land
use on its own (Johnson et al., 1997; Thomas et al., 1999; Hale et al.,
2004; King et al., 2005; Kratzer et al., 2006; Becker et al., 2014).

Despite the importance of landscape attributes over variation in
water quality, there have been few attempts to explicitly account for
their influence within most water quality models. As a result, most
water quality modelling approaches fail to incorporate the effective
properties of the landscape at relevant scales, seldom consider the im-
portant role of groundwater over surface water quality, are often re-
stricted to the estimation of a small number of contaminants (e.g.
NO3

−), may lack transparency (e.g. ‘black-box’ models and the approxi-
mation of decay constants to represent attenuation), and are typically
of limited accuracy. For these reasons, water quality models are often
not relevant to land users and their communities, with a growing num-
ber of land-based practitioners, policy makers, and researchers calling
for a shift towards amore transparent and process-based understanding
of environmental systems (Grayson and Bloschl, 2000; Sivakumar, 2004,
2008; National Research Council, 2007; Tsakiris and Alexakis, 2012;
Bracken et al., 2013; Parliamentary Commissioner for the Environment,
2018).

One approach to overcoming such limitations has been the applica-
tion of landscape based controlling factor classifications to estimate spa-
tial variability in water quality or ecosystem health (Krantz and Powars,
2000; Snelder and Biggs, 2002; Snelder et al., 2004; Scott et al., 2006;
Hume et al., 2007; Dymond, 2010). Landscape based classifications rec-
ognise an organisational hierarchy of ‘controlling landscape factors,’ e.g.
the role of attributes such as topography, soil type, and rock type over
spatial variation in water quality. These classifications rank the land-
scape according to the similarity of controlling factors via a top-down
approach that results in amosaic of geographically independent catego-
ries (Snelder and Biggs, 2002; Hume et al., 2007; Rissmann, 2011). The
approaches start with the development of a basic thesis or model of the
‘assumed’ causes of spatial variation to provide a pragmatic simplifica-
tion of reality with the benefit of not being constrained by nil or limited
measurement data (Snelder and Biggs, 2002; Krantz and Powars, 2000).

Despite evidence for strong correlations between assumed controlling
factors and hydrochemical signatures at large scales (N100–1000 km2),
the assumption of spatial linkages between controlling factors and
governing processes at finer scales may not always hold true (Troy
et al., 2008; Matott et al., 2009; Bracken et al., 2013). This can be due to:

(i) a lack of process-level understanding of the relationships be-
tween landscape attributes and resultant processes (e.g. model
structure), and;
(ii) the use of geospatial datasets typically created for purposes other
than water quality, which may lack, or fail to represent at ade-
quate scales, the ‘effective’ properties of the landscape that are
most critical.

For example, if the tendency of a local soil series to ‘crack’ in re-
sponse to soilmoisture deficit is not recognised as an important control-
ling factor, or if the soil survey being used for controlling factor
classification lacks representation of cracking soils, significant misalign-
ment in the resultant hydrochemical and water quality signatures may
occur (Jamieson et al., 2002; Beven and Germann, 2013; Beyer et al.,
2016a; Kurtzman et al., 2016; Hughes et al., 2016). In situations such
as these, the controlling factor relationship breaks down resulting in a
loss of resolution at the scale of the effective property (e.g. cracking
soil units), although the classification may still work at larger scales
(Rissmann et al., 2016a).

To incorporate the most important, hereafter ‘effective,’ landscape
attributes and partially overcome issues of scale, we propose a new, hy-
brid controlling factor classification that incorporates bottom-up mea-
surements of hydrochemical signatures within the classification target
(i.e. surface water and hydrologically connected aquifers), to provide a
point of reference for testing and refining the hypotheses that underpin
the top-down controlling factor classification of the landscape for water
quality. We term this hybrid controlling factor approach Process-
Attribute Mapping (PoAM) to reflect the use of hydrochemical process
signalswithin the classification target (i.e. water) to guide the identifica-
tion and subsequent classification of the effective attributes of the land-
scape. The PoAM approach is based on the following key assumptions:

(i) There are three dominant processes that control the
hydrochemical evolution of water (Moldan and Černý, 1994;
Clark and Fritz, 1997; Langmuir, 1997; Kendall and McDonnell,
1998; Güler et al., 2002):

a) hydrological;
b) microbially-mediated redox, and;
c) chemical weathering

(ii) Gradients in each dominant process (e.g. redox succession) arise
in response to gradients in particular landscape attributes (e.g.
electron donor abundance), and therefore;

(iii) Hydrochemical signatures are best suited to guide landscape
classifications for water quality as they provide direct evidence
of the evolutionary history of water, including its hydrological
origins and interactions with soil and geological materials (e.g.
redox and weathering reactions).

The ultimate aim is to produce a series of process-attribute gradient
(PAG) maps, within a geographic information system (GIS) framework,
that replicate as faithfully as possible the natural landscape gradients
that control spatial variation in steady-state hydrological, redox, and
weathering response. If the PAGs successfully estimate spatial variation
in the concentration of key hydrochemical indicators (e.g., hydrological
tracers, redox sensitive species, pH, alkalinity) the model is assumed fit
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to be combined with a land use intensity gradient, to estimate steady-
state surface water quality.

The purpose of this paper is to summarise the general conceptual
framework for PoAM and provide a case study of the application and
performance of the model for the estimation of spatial variation in
steady-state water quality for the province of Southland, New Zealand.
A detailed examination of the underlying process-attribute relation-
ships governing hydrochemical evolution and water quality across
Southland is beyond the scope of this manuscript, but is available else-
where (Beyer et al., 2016a, 2016b; Rissmann et al., 2016a, 2016b,
2016c, 2016d, 2016e, 2016f; Rodway et al., 2016; Rissmann et al.,
2018a, 2018b).

2. Materials and methodology

2.1. Environmental setting

Southland is the southernmost province of the South Island, New
Zealand, comprising an area of 31,824 km2 (Fig. 1). It is characterised
by a complex geological history including a succession of glacial and in-
terglacial cycles throughout the Quaternary that have strongly influ-
enced the surficial environment (Turnbull and Allibone, 2003). Alpine
regions, with a maximum elevation of 2450 m relative to sea level
(RSL), are prominent features of the western and northern most extent
of the province. Subalpine hill country and hill country (b800 m RSL)
makes up 56% of the area, followed by extensive lowland plains (21%)
associatedwithmantling of shallow basement rock by fluvioglacial out-
wash, and a series of marine terraces at the coast. Fourmain river catch-
ments, the Waiau, Aparima, Oreti, and Mataura originate in the
northern mountains, receive drainage from hill and lowland catch-
ments, and ultimately discharge at the coast via significant estuarine
systems (Fig. 1).

The region has a cool, humid, temperate climate with a pronounced
easterly rain shadow associated with prevailing westerly airflows off
the Tasman Sea and interception by the Southern Alps in Fiordland
(Macara, 2013). Precipitation in Fiordland exceeds 6000 mm annually.
East of Fiordland precipitation ranges between 800mm for some north-
ern inland basins and 1300 mm at the southern coast. Snow pack
Fig. 1.Maps showing a) the location of the province of Southlandwithin NewZealand, b) the lan
c) the landuse intensity (LUI). Rakiura Stewart Island is not shown in b) or c). The land cover and
to in the text are numbered. (For interpretation of the references to color in this figure legend,
accumulates across the northern and western mountains over the win-
ter months, with melt occurring during the Austral spring.

Alluvial source rock and bedrock lithology is varied, ranging from
felsic sedimentary and metamorphic rock, limestone, carbonaceous
mudstones, through to ultramafic assemblages (Turnbull and Allibone,
2003). Unconfined aquifers occur as a mosaic of small discontinuous
units restricted to the lowland plains and constitute a thin mantle (c.
0–60m;median 12.5m; n=1750 bore logs) of alluvium overlying pre-
dominantly poorly permeable basement rock (Hughes, 2001). The
groundwater table is shallow (2.3 m below ground level; n = 1750
wells) and due to the structural grain of the region, regional-scale
groundwater flow paths within the overlying alluvial cover sequence
are absent (Hughes, 2001; Environment Southland unpublished data).
Short mean residence times of ≤1–10 years for groundwater hosted by
alluvial aquifers systems (Burbery, 2012; Daughney et al., 2015), reflects
limited aquifer storage and rapid drainage via a dense surface water
network, and both surficial and subsurface artificial drainage, which in
lower lying areas intersects the local water table during the wetter
months of the year (Ledgard, 2013; Pearson, 2015a).

Soils are mostly fine textured and slowly permeable, reflecting the
fine texture of fluvioglacial outwash and associated loess accumulation.
In addition to fine texture, the majority of lowland soils (N70%) are im-
perfectly to poorly drained, althoughwell drained and/or highly perme-
able soils occur along the riparian margins of main stem rivers, and as
high terrace remnants close to the northern mountains (Topoclimate
South, 2001; Turnbull and Allibone, 2003). Since colonisation by
Europeans in the 1800s, the majority of lowland vegetation has been
cleared and wetlands drained for pastoral farming (Ledgard, 2013;
Pearson and Couldrey, 2016; Moran et al., 2017). Large areas of hill
country have also been cleared of tussock grasslands, scrub, and forest
although just over half of the region,mainly in Fiordland and Stewart Is-
land, is preserved as conservation estate land. A recent shift from sheep
farming to dairy farming over the last 25 years has further increased
the intensity of land use across lowland and hill country areas and
resulted in a decline in surface water and estuarine ecosystem health
(Stevens and Robertson, 2012 and references therein; Ledgard,
2013; Moreau and Hodson, 2015; Pearson and Couldrey, 2016;
Moran et al., 2017).
d cover classificationwith themain rivers and their associated catchments (red lines), and
landuse classifications are from2012 and 2015 respectively. The areas of interest referred
the reader is referred to the web version of this article.)
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2.2. Input data

2.2.1. Hydrochemical and water quality samples
PoAM utilised 20,226 surface water, 8023 groundwater, 28

spring, 67 soil matrix water, 102 soil artificial drainage (mole-pipe
type) waters, and 210 precipitation (rain, snow, hail) hydrochemical
and water quality analyses to guide the identification and mapping
of regional process-attribute gradients for the Southland province
(Rissmann et al., 2016a). Table 1 provides a summary of the range
of hydrochemical and water quality measures collected for the pe-
riod 2000 to 2016, and Fig. 2 shows the sampling locations. Ground-
water samples from the unconfined aquifer systems of the region
provided important constraint across lowland areas (Rissmann
et al., 2016a).
Table 1
Hydrochemical andwater quality analytes (gray highlight) used in this study. The number of sam
ity measures. The 93 surface water sites retained for model analysis have all the parameters lis

Type Analyte Units

Major inorganic constituents

Ca2+ mg/La

Cl− mg/L
DIC mg/L
HCO3

− mg CaCO
K+ mg/L
Mg2+ mg/L
Na+ mg/L
SO4

2− mg/L
SiO2 mg/L

Minor inorganic constituents

B mg/L
Br− mg/L
F mg/L
Fe2+ mg/L
I mg/L
Mn2+ mg/L

Nutrients

TON mg N/Le

NO3
− mg N/L

NO2
− mg N/L

NH4
+ mg N/L

TKN mg N/L
TN mg N/L
DRP mg P/Lg

TDP mg P/L
TP mg P/L
DOC mg/L
TOC mg/L

Isotopes
δ2Η-Η2Οh ‰ V-SM
δ18Ο-Η2Ο ‰ V-SM
δ13C-DIC ‰ V-PD

Biological
E. coli cfu/100
FC cfu/100

Other parameters

Clarity m
DOField mg/L
EC μS/cmk

ORP mV
pHField pH units
pHLab pH units
TSS mg/L
VSS mg/L
Temp °C
Turb NTUl

a mg/L = milligrams per litre (equivalent to grams per cubic meter and parts per million).
b Most samples collected by Environment Southland are filtered (0.45 μM) prior to analysis
c DIC is the sum of dissolved CO2, H2CO3, HCO3, and CO3.
d Alkalinity quantifies the acid-neutralising capacity of a water sample, which is typically rep

mg HCO3/L.
e mg N/L means that the reported concentrations only reflect the weight of nitrogen within
f TON = NO3 + NO2.
g mg P/L means that the reported concentrations only reflect the weight of phosphorus with
h The δ notation relates the isotope ratio of the sample to the isotope ratio of a standard and
i Calibrated standards used for isotope ratios are Vienna Standard Mean OceanWater (V-SM

(SRM 951).
j Colony forming units per 100 mL, which provides an indication of the number of viable ce
k Microsiemens per centimetre.
l Nephelometric turbidity units.
Detailed information as to the sampling methodologies, field mea-
sures, laboratory analysis, calculation of hydrochemical metrics (e.g.
major ion facies, saturation indices), and quality assurance and quality
control of the samples used in this project are provided in Rissmann
et al. (2016a) and were collected according to the New Zealand Ground-
water Sampling Protocol (Ministry for the Environment, 2006).Major and
trace species and water quality measures were analysed by R. J. Hill Lab-
oratories Limited, New Zealand. All samples were required to have a
charge balance error of less than ±5%. The stable isotopes of water
δ18O-H2O [‰, Vienna Standard Mean Ocean Water (V-SMOW)], δ2H-
H2O [‰, V-SMOW] and dissolved inorganic carbon [δ13C-DIC ‰, Vienna
Pee Dee Belemnite] were sampled according to the recommendations of
the International Atomic Energy Association and analysed at the Geolog-
ical Sciences Department, University of Canterbury, New Zealand.
pleswith hydrochemicalmeasures ismuch smaller than thosewith standardwater qual-
ted below.

Parameter name

Dissolved calciumb

Dissolved chloride
Dissolved inorganic carbonc

3/Ld Dissolved bicarbonate alkalinityd

Dissolved potassium
Dissolved magnesium
Dissolved sodium
Dissolved sulphate
Dissolved reactive silica
Dissolved boron
Dissolved bromide
Dissolved fluoride
Dissolved iron
Dissolved iodide
Dissolved manganese
Total oxidised nitrogenf

Dissolved nitrate
Dissolved nitrite
Dissolved ammoniacal nitrogen
Total Kjeldahl nitrogen
Total nitrogen
Dissolved reactive phosphorus
Total dissolved phosphorus
Total phosphorus
Dissolved organic carbon
Total organic carbon

OWi 2H to 1H isotope ratio in water
OW 18O to 16O isotope ratio in water
B 13C to 12C isotope ratio in dissolved inorganic carbon (DIC)
mLj Escherichia coli
mL Faecal coliforms

Visual clarity
Dissolved oxygen (field measured)
Electrical conductivity, temperature corrected
Oxidation-reduction potential
pH (field measured)
pH (lab measured)
Total suspended solids
Volatile suspended solids
Water temperature
Turbidity

, and hence analytical results reflect dissolved rather than total concentrations.

orted inmg CaCO3 per litre. Multiply by 0.82 to convert concentration frommg CaCO3/L to

the compound.

in the compound.
is reported in parts per thousand (‰), e.g. δ2H ¼ ½ ð

2H=1HÞsample

ð2H=1HÞstandard
−1� � 1000.

OW), Vienna Pee Dee Belemnite (V-PDB), and boric acid Standard Reference Material 951

lls.



Fig. 2. Sample site locations used in this study overlain on an 8mDigital ElevationMap of the Southland province, NewZealand. a) Location site and type of sample taken across Southland.
Most groundwater samples are from unconfined aquifer systems. b) The long-term surface water monitoring sites (yellow circles) and associated surface water capture zones (red out-
lines) used for model evaluation. Lakes, aquifers, and the main waterways are also shown for reference. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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2.2.2. Geospatial datasets
To best define the effective landscape properties of the province, at-

tributes were selected from several national and regional GIS datasets.
This included: topography, elevation, and altitude from an 8 m digital
elevation model (DEM; Land Information New Zealand, 2012); geolog-
ical attributes from the 1:250,000 geological map series (QMAP) cover-
ing Southland (Turnbull and Allibone, 2003), and the New Zealand Land
Resource Inventory (NZLRI; 1:50,000; Newsome et al., 2008; Lynn et al.,
2009); soil attributes from Topoclimate South (1:50,000; Topoclimate
South, 2001) and Fundamental Soils Layer (1:50,000; Landcare
Research, 2010), land cover from the Land Cover Database (LCDBv4.1;
Landcare Research, 2015), and; land use from the Southland Land Use
Map (Pearson and Couldrey, 2016). Regarding hydrological input data:
riverlines, stream Strahler order, and catchment areas (capture zones)
were sourced from the River Environment Classification (REC; Snelder
and Biggs, 2002); precipitation volume from the National Climate Data-
base (Macara, 2013); δ18O-H2O of precipitation from the national
isoscape model of Baisden et al. (2016), and; unconfined aquifer type
(e.g. lowland, terrace, riparian) and extent from Environment South-
land (unpublished). Land use intensity was derived by combining the
Land Use Capability classification of Lynn et al. (2009) with the Land
Cover Database (Fig. 1c).
2.2.3. Long-term water quality monitoring sites
A subset of 93 surface water sites, comprising 7028 repeat measures

for the period 2013–2018, were used for evaluating the performance of
PAG maps to estimate spatial variation in hydrochemical measures and
for subsequent development of models for estimating spatial variation
in both surface water hydrochemistry and water quality (Section 3.3;
Fig. 2). Hierarchal cluster analysis (HCA) was applied to the log trans-
formed and z-scored median data for each site (following the recom-
mendations of Güler et al., 2002) in order to subdivide waters into
distinct hydrochemical groups for hypothesis development and model
evaluation. HCA assigned the surface water sites into 12 clusters on
the basis of 22measures (pH,Na+, K+, Ca2+,Mg2+, SiO2, total alkalinity,
Cl−, I, F, B, SO4

2−, DO, Mn2+, Fe2+, TON, TKN, TP, DRP, δ18O-H2O, δ2H-
H2O, and δ13C-DIC).
2.3. Conceptual framework and general methodology

A brief summary of the dominant processes responsible for the spa-
tial variation in surface water hydrochemistry and their associated
PAGs for Southland is summarised in Table 2 and Appendix A. In depth
analysis and discussion of PAGs is available in a series of technical reports
(Beyer et al., 2016a, 2016b; Rissmann et al., 2016a, 2016b, 2016c, 2016d,
2016e, 2016f; Rodway et al., 2016; Rissmann et al., 2018b; Pearson et al.,
2018).

The drivers of spatial variation in hydrochemistry across a catch-
ment or a region are exploredwith a view to building a series of control-
ling factor hypotheses for each dominant process which are then tested
against long-termwater quality monitoring hydrochemical data (Fig. 3;
Rissmann et al., 2016a; Rissmann et al., 2018b, 2018c).

Conceptually, the PoAM framework recognises that hydrochemical
andwater quality measures are driven bymore than one PAG occurring
across multiple domains (e.g. atmospheric, soil, shallow aquifer do-
mains) and scales (Rissmann et al., 2016a; Rissmann et al., 2018b).
Therefore, overall compositional variation between surface water mon-
itoring sites, within a catchment or across a region, is the sum of multi-
ple PAGs of varying steepness (Rissmann et al., 2016a; Rissmann et al.,
2018b).
2.3.1. Step 1: Spatial hydrochemical exploration for hypothesis
development

Hypothesis development includes specification of the relative sensi-
tivity (importance) and magnitude (direction) of the response of a
hydrochemical signaturewith respect to one ormore effective landscape
attribute gradients, and is supported by local knowledge of those gradi-
ents, relevant literature, and/or through the inclusion of existing control-
ling factor classifications (e.g. Snelder and Biggs, 2002; Rissmann, 2011;
Killick et al., 2015; Beyer et al., 2016a, 2016b; Rodway et al., 2016;
Rissmann et al., 2016a, 2016b, 2016c, 2016d, 2016e, 2016f; Rissmann
et al., 2018a, 2018b).

In practice, hydrochemical and water quality measures are imported
intoGIS and provide the reference point for associationwith pre-existing
spatial classifications of soil, geology, and hydrological representations of



Table 2
The dominant processes and process-attribute gradients for estimating spatial variation in hydrochemistry and water quality.

Process Role Controlling factor Process attribute gradient Scale Data scale

Hydrological

The deposition of marine aerosols (wet and
dry) and the stable isotopes of water under
the local climatic setting, prior to
redistribution by the hydrological network.

Topographic controls of elevation and
distance from coast over δ2H-H2O and
δ2H-H2O signatures and marine aerosol
(Na+, Cl−, Br−, B, Mg+2, SO4

−2) loading.

Atmospheric (ATM)
Macro
(1000–10,000 km2)

Regional-scale

The transport and mixing of solutes and
particulates by water through the surface
water and shallow groundwater network
(where present).

Topographic domains (e.g. alpine, hill,
lowland) and connectivity associated
with distinct hydrological tracer
signatures in surface waters and
groundwaters.

Recharge domain (RCD)
Meso to Macro
(1–1000 km2)

Regional-scale
higher order stream
network and
aquifers

Soil series scale hydrological pathways
occurring within recharge domains.

Overland flow (OLF) Deep
drainage (DD) Lateral
drainage (LAT) Natural soil
bypass (BP) Artificial
drainage (ART)

Micro
(0.01–10 km2)

Soil polygon for
1:50,000 maps

Property and paddock flow paths
associated small scale drainage basins
(b10 ha) and associated low order
ephemeral, intermittent, and perennial
streams.

Vector (riverlines) Sub-micro
(10−6–10−5 km2)

Low order stream
network

Redox

Low temperature (b35 °C), microbially
mediated succession of terminal electron
species (‘redox’) in unsaturated zone (soil)
and saturated zone (aquifer) materials.

Soil redox potential associated with soil
drainage class and redox indicators
(mottling and gleying).

Soil reduction potential (SRP)
Micro
(0.01–10 km2)

Soil polygon for
1:50,000 maps

Lithological-scale electron donor
abundance of subsurface geology.

Geological reduction
potential (GRP)

Meso to Macro
(10–10,000 km2)

Geological polygon
for
1:50,000–1:250,000
maps

Weathering
The Acid Neutralisation Capacity (ANC) of
unsaturated zone and saturated zone
materials (unconfined aquifers).

Lewis base concentration of soil.
Soil acid neutralisation
capacity (SANC)

Micro
(0.01–10 km2)

Soil series polygon
for 1:50,000 soil
maps

Lewis base concentration of geological
materials that host aquifers.

Geological acid neutralisation
capacity (GANC)

Meso to Macro
(10–10,000 km2)

1:50,000–1:250,000
geological maps
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river and aquifer networks. Multivariate methods, such as principal
component analysis (PCA), are useful for refining the relative sensi-
tivity of landscape attributes with regards to the spatial variation in
hydrochemical signatures (Güler et al., 2002; Rodway et al., 2016;
Beyer et al., 2016a; Rissmann et al., 2018a, 2018b, 2018c).

2.3.2. Step 2: Process-attribute gradient map construction
The controlling landscape attributes identified during Step 1 are ex-

tracted from one or more existing GIS datasets and combined in an at-
tempt to replicate, as accurately as possible, gradients for each
dominant process (Fig. 3; Table 3). If an important controlling factor is
not represented by existing classifications, e.g. the tendency of clay-
rich smectitic soils to crack in response to soil moisture deficit, it may
be necessary to generate a representation by extracting and combining
relevant controlling factor information (Beyer et al., 2016a).

Historical water quality measures, which often occur at higher spa-
tial densities, are used to guide the editing of geospatial layers so that
they represent as faithfully as possible actual PAG (Beyer et al., 2016a,
2016b; Rissmann et al., 2016b, 2016c, 2016d, 2016e, 2016f; Rissmann
et al., 2018a, 2018b, 2018c; Fig. 2). For example, historical measures of
electrical conductivity and NO3

− from unconfined aquifers may be
used to refine the effective hydrological boundary, i.e. solute gradient,
that exists between a riparian aquifer recharged by an alpine stream
and an adjacent lowland aquifer recharged by local precipitation
(Beyer et al., 2016a).

2.3.3. Step 3: Process-attribute gradient classification
Grouping of landscape attributes into effective classes is data driven,

using hydrochemical and/or a large number of low-resolutionwater qual-
ity measures (e.g. NO3

− and conductivity; Beyer et al., 2016a, 2016b;
Rissmann et al., 2018a, 2018b, 2018c). Hierarchal cluster analysis (HCA)
combined with post hoc significance testing of resultant classes is used
for grouping the landscape attributes according to hydrochemical and/
or water quality measures (Rodway et al., 2016; Beyer et al., 2016a,
2016b; Rissmann et al., 2018b, 2018c).
Given the objective is to represent only the effective attributes of the
landscape, the native complexity of existing classifications of landscape
attributes is often reduced (Rissmann, 2011; Rissmann et al., 2016a,
2016b, 2016c, 2016d, 2016e, 2016f, 2016g; Rissmann et al., 2018b,
2018c). For example, a regional geological survey containing 100 or
more individual rock typesmay be reduced to 3 or 4main classes accord-
ing to the relative abundance of bioavailable electron donors observed to
drive redox succession in shallow aquifer systems (Beyer et al., 2016b;
Rissmann et al., 2018b, 2018c). Despite the reduction in the complexity
of native classifications, a lack of hydrochemical or water quality data
may necessitate a subjective, albeit expert, hydrochemical grouping of
attributes (Rissmann et al., 2018b).

Resultant classes are subsequently ranked according to process sig-
nals, and numeric scores assigned. For example, HCA derived clusters
defining macro-scale recharge domains are ranked in terms of most to
least dilute and lowest to highest recharge altitude according to the con-
centration of Na+, Cl−, Br−, and the stable isotopes of water (Beyer
et al., 2016a; Rissmann et al., 2018b, 2018c); meso-scale soil and rock
acid neutralising capacity are ranked from least to most neutralising ac-
cording to pH and alkalinity (Rissmann et al., 2018b); and macro-scale
geological reduction potential of unconfined aquifer systems ranked
from most oxidising to most reducing according to the concentration
of redox sensitive species (Beyer et al., 2016b; Rissmann et al., 2018b,
2018c).

The input data for model development and evaluation is
compiled from the PAG classification in GIS. Capture zones are gen-
erated for the long-term surface water monitoring sites and com-
bined with each PAG, before being exported in a tabular format
(Rissmann et al., 2018b, 2018c). The tabulated PAG scores are pro-
portionally weighted by area for each capture zone and linked with
median hydrochemical and water quality measures for each moni-
toring site. Weighted PAG scores and median hydrochemical data
for each site are subsequently log transformed and Z-scored prior
to correlation analysis (Appendix C) and model development and
evaluation (Appendix D).



Fig. 3. A flow chart summary of key steps in process-attribute mapping (PoAM). The conceptual model provides a spatial representation of the key processes and contaminant transport
pathways whilst the numerical models provide an estimate of steady-state median surface water concentration.
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2.3.4. Step 4: Model development and evaluation
The model development and evaluation process assess if the classed

PAGs respond as hypothesised (Step 1), andwhether they are sufficiently
representative of actual hydrological, redox, and weathering gradients
(Rissmann et al., 2018b). Tabulated data is imported into themachine in-
telligence software package Eureqa (version 1.24.0; Schmidt and Lipson,
2015) which utilises symbolic regression (SR) as the genetic program-
ming algorithm, Pareto front optimisation for model selection, provides
measures of predictor sensitivity and magnitude, and cross validates by
splitting the data via a disjunctive approach where the training and vali-
dation data sets are kept separate (e.g. 90% training: 10% validation with
a random shuffle before splitting the data; Schmidt and Lipson, 2009,
2015; Dubčáková, 2011).

Modelling proceeds by the user identifying what are considered the
most sensitive PAGs for explaining spatial variation in each dominant
process (i.e., user defined in Step 1; Fig. 3). The SR algorithm then pro-
duces numeric expressions by randomly combining mathematical
building blocks, such as algebraic operators, analytical functions, con-
stant variables, and state variables (Khu et al., 2001; Schmidt and
Lipson, 2009). The SR algorithms retain those equations that best
model the PAG relationships and abandons unpromising solutions
(Khu et al., 2001; Schmidt and Lipson, 2009). Importantly, if a potential
causative PAG offers little explanatory power, relative to others, it is au-
tomatically excluded during the evolutionary process. After numerous
iterations, the SR algorithm returns a set of models (i.e. explicit
mathematical functions) that explain the spatial variation in
hydrochemical processes as a function of one or more PAGs. A subse-
quent model run is generated whereby all PAGs are selected as an
input and the SR algorithmdetermineswhich to retain (i.e. machine de-
fined). Model outputs include numeric scores of the sensitivity, magni-
tude of response, and form the basis for testing the hypotheses
formulated in Step 1, as well as for evaluating the adequacy with
which PAGs are replicated. The sensitivity of a given PAG is defined ac-
cording to its relative impact over a hydrochemical process signal. A
positive magnitude occurs when increases in a PAG score leads to in-
creases in the target variable, and vice-versa for a negative magnitude.

Model complexity and accuracy is assessed by the goodness of fit
(R2), correlation coefficient (r), root mean squared error (RMSE) and
mean absolute error (MAE) methods (Schmidt and Lipson, 2009,
2015; Dubčáková, 2011). Model selection is guided by the trade-off be-
tween R2 andmodel simplicity, where the R2 andMAE are analogues to
the Akaike information criteria (Aho et al., 2014).

Only when models are consistent with the hypotheses for the dom-
inant processes (Step 1) and are accurate (i.e. a cross-validated R2 of
≥0.75), are the mapped PAGs considered fit to be combined with a LUI
gradient for the estimation of spatial variation in steady-state surface
water quality. If the combination of PAG maps with land use intensity
provides a reasonable estimate of spatial variation in water quality the
model is then considered appropriate for estimation of steady-state sur-
face water quality across data poor areas (Rissmann et al., 2018b).



Table 3
A summary of the various geospatial and hydrochemical (sample type, analyte, GIS data) used to define each process attribute gradient, the dominant process they are associatedwith, the
scale at which the process attribute gradient is applied, and an example application.

Process PAG Sample types Hydrochemical analytes GIS dataset(s) and resolution PAG scale Example application

Hydrological ATM Precipitation, soil water,
ground and surface
waters

Na+, Cl−, δ18O-H2O, δ2H-H2O 8 m DEM, δ18O-H2O precipitation
isoscape (4 km2 pixel)

Macro
(1000–10,000 km2)

Rodway et al., 2016; Rissmann et al.,
2018a, 2018b.

RCD Soil waters, ground and
surface waters

Na+, Cl−, Br−, δ18O-H2O,
δ2H-H2O, δ13C-DIC, EC, NO3

−
Soil surveys (1:50,000), Aquifer
type and extent (1:50,000)

Meso to macro
(1–1000 km2)

Rissmann et al., 2018a, 2018b

OLF OLF runoff, surface
waters

Clarity, TSS Soil surveys (1:50,000), 8 m DEM Micro tomeso
(0.01–1 km2)

Pearson, 2015b

DD Ground and surface
waters

Clarity, TSS Soil surveys (1:50,000) Micro to meso
(0.01–1 km2)

Rissmann et al., 2018a, 2018b

LAT Soil water, ground and
surface waters

Clarity, TSS Soil surveys, 8 m DEM Micro to meso
(0.01–1 km2)

Rissmann et al., 2018a, 2018b

ART Soil water Clarity, TSS, DO, NO3
−, Mn2+,

Fe2+, SO4
2−, DOC

Soil surveys, 8 m DEM, Land Cover
(1 Ha)

Micro to meso
(0.01–1 km2)

Pearson, 2015a

BP Ground water, soil
artificial drainage

DO, NO3
−, Mn2+, Fe2+, SO4

2−,
DOC

Soil surveys (1:50,000) Micro to meso
(0.01–1 km2)

Beyer et al., 2016a; Rissmann et al.,
2018a, 2018b

Redox SRP Soil water, ground and
surface waters

DO, NO3
−, Mn2+, Fe2+, SO4

2−,
DOC

Soil surveys (1:50,000); soil
chemistry profile points.

Micro to meso
(0.01–1 km2)

Killick et al., 2015; Beyer et al., 2016a,
2016b; Rissmann et al., 2018a, 2018b.

GRP Ground and surface
waters

DO, NO3
−, Mn2+, Fe2+, SO4

2−,
DOC

Geological surveys
(1:50,000–1:250,000)

Meso to macro
(10–1000 km2)

Rissmann, 2011, Beyer et al., 2016a,
2016b; Rissmann et al., 2018a, 2018b.

Weathering SANC Soil water, ground and
surface waters

pH, Ca2+, DIC, bicarbonate
alkalinity, carbonate alkalinity,
δ13C-DIC

Soil surveys (1:50,000); soil
chemistry (profile points)

Micro to meso
(0.01–1 km2)

Rissmann et al., 2016a, 2018a.

GANC Ground and surface
waters

pH, Ca2+, DIC, bicarbonate
alkalinity, carbonate alkalinity,
δ13C-DIC

Geological surveys
(1:50,000–1:250,000); soil
chemistry (profile points)

Meso to macro
(10–1000 km2)

Rissmann et al., 2016a, 2018a.

ATM= atmospheric loading; RCD= recharge domain; OLF = overland flow; DD= deep drainage (vertical soil profile drainage); LAT= lateral drainage (horizon permeable drainage);
ART= artificial drainage (subsurface mole-pipe and open ditch drainage); BP= bypass (soil moisture deficit induced cracking of clay-rich soil and bypass of the soil matrix); SRP= soil
reduction potential; GRP = geological reduction potential; SANC = soil acid neutralisation capacity; GANC = geological acid neutralisation capacity.
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3. Results

3.1. Main process hypotheses (step 1)

The hypothesised drivers of spatial variation in Southland
hydrochemistry are summarised in Table 4with additional context pro-
vided in Appendix B. These hypotheses are specific to the regional scale
and vary when applied at catchment and/or subcatchment scales
(Rissmann et al., 2016a; Rissmann et al., 2018b).

3.2. Process-attribute gradient maps (steps 2–3)

Eleven PAGs, defining the dominant processes governing
hydrochemistry were produced for the Southland province (Figs. 4–6;
Table 4
A summary of the main hypotheses for each dominant process used in Step 1, Southland prov

Dominant
process

Narrative S
P

Hydrological Spatial variation in the indicators of water source and hydrological
connectivity, i.e. the conservative hydrological tracers Na+, Cl−, Br−,
δ18O-H2O, δ2H-H2O, and δ13C-DIC will be explained best by combination
of the macro-scale atmospheric (ATM) and recharge domain (RCD)
process-attribute gradients.

M
R

Redox Spatial variation in redox indicators, i.e. DO, Mn2+, Fe2+, and DOC will
be explained best by the combination of macro-scale hydrological
(ATM, RCD), meso-scale hydrological soil bypass (BP), and meso-scale
soil and geological redox potential (SRP, GRP) process-attribute
gradients.

H
R

Weathering Spatial variation in the indicators of weathering, i.e. pH and total
alkalinity will be explained best by combination of the macro-scale
hydrological (ATM, RCD) and meso-scale weathering (SANC, GANC)
process-attribute gradients.

W
≥

Overall
hydrochemical
composition

Spatial variation in HCA defined cluster membership will be explained
best by combining hydrological (ATM, RCD, BP), redox (SRP, GRP), and
weathering (SANC, GANC) process-attribute gradients.

H
R
W

PAG = Process-attribute gradient; ATM = atmospheric loading; RCD = recharge domain; S
neutralisation capacity; GANC = geological acid neutralisation capacity; BP = bypass (soil mo
Tables 2–4, Appendix B). Of the 11 PAGs, 7 are associated with the hy-
drological drivers of spatial variation in hydrochemistry (Fig. 4). Of the
7 hydrological PAGs, the atmospheric (ATM) and recharge domain
and hydrological connectivity (RCD) layers are macro in scale
(Table 3). The remaining 5 hydrological PAGs are all associated with
the soil zone and representmeso-scale hydrological gradients in percent
precipitation occurring as overland flow (OLF), lateral drainage (LAT),
shrink-swell mediated soil zone bypass (BP), deep drainage through
the soil profile (DD), and artificial drainage of the soil profile (ART)
(Table 3; Pearson, 2015a, 2015b; Pearson et al., 2018). The redox and
weathering processes are comprised of separate soil and geological
PAGs (Figs. 5 and 6; Beyer et al., 2016b). The soil PAG overlies the geo-
logical PAG, except where bedrock outcrops (Rissmann et al., 2016a).
Across the lowland areas of the Southland province, the geological
ince, New Zealand.

ensitivity of
AG

Magnitude

ostly ATM N

CD
Na+, Cl−, Br−, and the stable isotopes of water will show a positive
magnitude, and δ13C-DIC a negativemagnitude, across bothmacro-scale
hydrological process-attribute gradients.

ydrological N
edox

Mn2+, Fe2+, and DOC will show a positive magnitude, and DO a
negative magnitude, across the macro-scale hydrological and
meso-scale redox process-attribute gradients; Mn2+, Fe2+, and DOCwill
show a negative, and DO a positive, magnitude across themeso-scale BP
process-attribute gradient.

eathering
Hydrological

Total alkalinity will show a positive magnitude across the meso-scale
weathering and macro-scale hydrological process-attribute gradients;
pH will show a positive magnitude across the weathering
process-attribute gradients but a negative magnitude across the
macro-scale hydrological process-attribute gradients.

ydrological N
edox =
eathering

Not applicable.

RP = soil reduction potential; GRP = geological reduction potential; SANC = soil acid
isture deficit induced cracking of clay-rich soil and bypass of the soil matrix).



Fig. 4. Hydrological process-attribute gradient maps of a) atmospheric (ATM), b) recharge domain and hydrological connectivity (RCD) including soil zone bypass (BP), c) overland flow
(OLF), d) deep drainage (DD), e) lateral drainage (LAT) and, f) artificial drainage (ART). The base map is an 8m DEM of the Southland province, New Zealand. Large lakes (light blue) and
major rivers (dark blue) are shown for reference. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. The process-attribute gradient maps for the redox potential of a) soil zone and b) geological substrate. The base map is an 8 m DEM of the Southland province, New Zealand. Large
lakes (light blue) and major rivers (dark blue) are shown for reference. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

824 C.W.F. Rissmann et al. / Science of the Total Environment 672 (2019) 815–833
PAGs represent the upper portion of the unconfined aquifer system
(Rissmann et al., 2016a).

3.3. Model development and evaluation (step 4)

3.3.1. Hydrochemistry
The performance of PoAM to replicate the effective hydrological,

redox, andweathering gradients of the Southland province is presented
in Table 5. User defined functions for the dominant processes all
responded as hypothesised (Step 1; Table 4, Appendix D); and with
the exception of dissolved oxygen (DO, R2 = 0.56), cross-validated R2

values of 0.75 to 0.95 indicated good to very good representation of
macro and meso-scale hydrological gradients, and meso-scale redox
and weathering gradients (Table 5).

Machine defined runs retained a greater number of PAGs (predic-
tors), maximum of 6 of the 11 PAGs, and overall produced slightly less
Fig. 6. The process-attribute gradientmaps for the acid neutralisation capacity of the a) soil zon
Zealand. Large lakes (light blue) and major rivers (dark blue) are shown for reference. (For inte
version of this article.)
complex and more accurate models (R2 = 0.79 to 0.96 excluding DO;
Table 5). The main difference between the user and the machine de-
fined models was the inclusion and retention of the meso scale hydro-
logical, redox and weathering PAGs often in place of, or in addition to
the macro-scale hydrological PAGs. Notably, many of the meso-scale
PAGs are significantly correlated with macro-scale ATM and RCD PAGs
due to the regional setting (Appendix C).

Accounting for spatial correlation between macro- and meso-scale
PAGs, the pattern of predictor retention by the machine defined runs
were also consistent with the hypotheses proposed in Step 1 for South-
land (Table 4). Specifically, the hydrological PAGs were collectively the
most sensitive predictors retained by the machine defined runs for the
hydrological processes; hydrological PAGs followed by the redox (soil
reduction potential, geological reduction potential and indirectly artifi-
cial drainage, deep drainage, and soil zone bypass) PAGs were the most
sensitive predictors retained for the redox processes; hydrological
e and b) geological substrate. The base map is an 8mDEM of the Southland province, New
rpretation of the references to color in this figure legend, the reader is referred to the web



Table 5
User defined and machine defined hydrochemical model and performance for dominant processes, Southland province, New Zealand.

User function User defined model R2 Complexity Machine
function

Machine defined model R2 Complexity

Hydrology

Cl− = f
(ATM, RCD)

Cl−=0.09+ 0.58 ∗ RCD+ 0.58 ∗ ATM+
0.85 ∗ ATM^2 + 0.71 ∗ ATM^3− 0.26 ∗
RCD ∗ ATM− 0.31 ∗ RCD^2− 0.648 ∗ RCD
∗ ATM^2

0.94 43
Cl− = f(ATM,
RCD, BP, SRP,
GRP)

Cl− = 0.7788 ∗ ATM+ 0.4589 ∗ RCD− 0.06051−
0.1009 ∗ SRP^2− 0.159 ∗ RCD ∗ GRP ∗ BP− 0.3949 ∗
RCD ∗ ATM ∗ BP

0.96 31

Na+ = f
(ATM, RCD)

Na+ = 0.07 + 0.67 ∗ RCD+ 0.27 ∗ ATM
+ 0.56 ∗ ATM^3 + 0.35 ∗ ATM^2 + 0.048
∗ RCD^3− 0.51 ∗ RCD ∗ ATM− 0.66 ∗
RCD ∗ ATM^2

0.95 45
Na+ = f
(ATM, RCD,
SRP)

Na+ = RCD+ 0.1951 ∗ ATM+ 0.4502 ∗ ATM^3 +
0.082 ∗ SRP ∗ RCD^2− 0.08205− 0.5496 ∗ RCD ∗
ATM^2

0.96 31

Br = f(ATM,
RCD)

Br = 0.26 + ATM+ 0.38 ∗ RCD +
ATM^2–0.18 ∗ ATM^5–0.53 ∗ ATM^4

0.75 33
Br = f(ATM,
SRP, BP,
GANC, LUI)

Br= 0.1185+ 0.8819 ∗ ATM+ 0.1509 ∗ LUI ∗ SRP−
0.2469 ∗ SRP− 0.2824 ∗ GANC ∗ BP− 0.4477 ∗ ATM
∗ BP

0.91 27

δ18O-H2O= f
(ATM, RCD)

δ18O-H2O= 0.17 + 0.64 ∗ ATM^2 + 0.62
∗ ATM^3+ 5.8 ∗ ATM ∗ cos(0.49 ∗ RCD)−
RCD^2–5.3 ∗ ATM

0.93 35

δ18O-H2O = f
(ATM, RCD,
GRP, BP,
SANC, DD)

δ18O-H2O= 0.1255+ 0.4749 ∗ ATM+ 0.2946 ∗ RCD
+ 0.1877 ∗ BP + 0.1604 ∗ ATM^3− 0.4146 ∗ RCD ∗
BP− 0.1773 ∗ LUI ∗ RCD ∗ ATM

0.96 33

δ2H-H2O = f
(ATM, RCD)

δ2H-H2O = 0.26 + 0.5 ∗ ATM+ 2.7 ∗ sin
(RCD) + 0.5 ∗ ATM^3 + 0.5 ∗ ATM^2–2.8
∗ RCD− 1.1 ∗ RCD^2–0.27 ∗ RCD ∗ ATM^2

0.94 41
δ2H-H2O= f
(ATM, RCD,
LUI, BP, OLF)

δ2H-H2O=0.05265+ 0.3761 ∗ RCD+0.3254 ∗ ATM
+ 0.3213 ∗ ATM^3 + 0.15 ∗ LUI ∗ OLF ∗ BP− 0.1673
∗ LUI ∗ RCD ∗ ATM

0.96 37

δ13C-DIC = f
(ATM, RCD)

δ13C-DIC = 0.16 + 2.9 ∗ RCD ∗ ATM^2 +
1.15 ∗ RCD ∗ ATM^3− ATM ∗ sin(0.16 +
2.9 ∗ ATM)− 0.27 ∗ ATM− 1.85 ∗ RCD

0.79 38

δ13C-DIC = f
(LUI, SANC,
ART, BP, SRP,
DD)

δ13C-DIC = 0.1849 ∗ ART^2 + 0.4848 ∗ SANC ∗ DD^2
− 0.6779 ∗ LUI− 0.1484 ∗ LUI ∗ DD− 0.2849 ∗ BP ∗
SRP^2

0.83 31

Redox

DO= f(SRP,
GRP, ATM,
RCD, BP)

DO= 0.1952 ∗ RCD ∗ BP + 1.166 ∗ GRP ∗
sin(1.294 ∗ BP ∗ SRP^2) + 0.2484 ∗ sin
(0.7313 + 5.059 ∗ GRP + 2.627 ∗ RCD)−
sin(GRP ∗ BP^3)

0.56 46
DO= f(DD,
SRP, ART, BP,
SANC)

DO= 0.151 ∗ LUI ∗ GANC + 0.2229 ∗ ATM ∗ SRP ∗
OLF ∗ ART + 0.7206 ∗ ART ∗ SANC^2 ∗ sin(BP)−
0.8206 ∗ SRP ∗ GRP ∗ sin(BP)

0.67 39

Mn2+ = f
(SRP, GRP,
ATM, RCD,
BP)

Mn2+ = 0.41 + 1.3 ∗ ATM+ 0.5 ∗ GRP ∗
BP + 0.36 ∗ ATM^2–0.42 ∗ ATM ∗ BP−
0.17 ∗ SRP^2

0.87 29
Mn2+ = f
(ART, ATM,
GRP, LUI, BP)

Mn2+ = 0.1843 + 0.6967 ∗ ART + 0.4423 ∗ ATM+
0.08515 ∗ GRP + 0.007284 / GRP + 0.2722 ∗ LUI ∗
GRP− 0.1366 ∗ LUI2− 0.4796 ∗ LUI ∗ ART ∗ BP

0.86 38

Fe2+ = f
(SRP, GRP,
ATM, RCD,
BP)

Fe2+=0.31+0.54 ∗ ATM+0.54 ∗ ATM ∗
SRP + 0.50 ∗ RCD ∗ SRP+ 0.16 ∗ SRP^2+
0.51 ∗ SRP ∗ ATM^2–0.27 ∗ RCD ∗ BP^2

0.83 45

Fe2+ = f
(ATM, GRP,
ART, SANC,
LUI, BP)

Fe2+ = 0.2799 ∗ GRP+ 0.1212 ∗ ART+ 0.3753 ∗ LUI
∗ GRP + 0.1103 ∗ SANC2 + sin(0.4566 ∗ ATM)−
0.2136 ∗ SANC ∗ GRP− 0.225 ∗ ART ∗ BP

0.84 38

DOC= f
(SRP, GRP,
ATM, RCD)

DOC= 0.21 ∗ RCD + 0.07 ∗ SRP + 0.10 ∗
RCD ∗ SRP + 0.12 ∗ ATM ∗ GRP^2 +
0.24/(2.5− 3.0 ∗ ATM)− 0.04

0.94 32
DOC= f(ART,
SANC, BP,
ATM)

DOC= 0.2317 ∗ RCD+ 0.04685 ∗ OLF− 0.3357−
0.1576 ∗ OLF ∗ GRP^2− 0.3028 ∗ SANC ∗ ATM^2 ∗
exp(ATM)

0.92 31

Weathering

pH= f
(SANC,
GANC, RCD,
ATM)

pH=0.068+0.24 ∗GANC+0.25 ∗ SANC
∗ exp(ATM) + GANC ∗ sin(0.2642 ∗ RCD)
+ 0.02 ∗ factorial(0.46 ∗ GANC− 0.54−
RCD)

0.79 50

pH= f(GRP,
SANC, OLF,
BP, ART,
ATM)

pH= 0.3372 ∗ ATM ∗ OLF ∗ GRP^2 + sin(0.2367 +
0.2923 ∗ SANC+0.3331 ∗ ART ∗ BP+ 0.3189 ∗ATM ∗
SANC− 0.06645 ∗ GRP^4)

0.79 40

Total
Alkalinity= f
(SANC,
GANC, RCD,
ATM)

Total Alkalinity = 0.29 + 0.17 ∗ SANC+
0.10 ∗ RCD ∗ SANC− sin(0.10 ∗ GANC^2)
− 0.31 ∗ RCD ∗ ATM− 0.17 ∗ ATM^2−
0.18 ∗ ATM^3

0.81 40

Total
Alkalinity = f
(BP, ATM,
RCD, GANC,
ART)

Total Alkalinity = 0.08035 + 0.1719 ∗ BP +
0.03631/BP + 0.4292 ∗ RCD ∗ GANC + 0.3947 ∗ ATM
∗ GANC ∗ BP + 0.3267 ∗ BP ∗ ART^2 + 0.0004306 /
(0.01053 + 0.1719 ∗ BP)

0.90 41

For detailed performance results see Appendix D. HCA = Hierarchical Cluster Analysis membership; ATM = atmospheric loading; RCD = recharge domain; SANC = soil acid
neutralisation capacity; GANC= geological acid neutralisation capacity; SRP= soil reduction potential; GRP= geological reduction potential; OLF= overland flow; DD=deep drainage
(vertical soil profile drainage); LAT= lateral drainage (horizon permeable drainage); ART= artificial drainage (subsurfacemole-pipe and open ditch drainage); BP= bypass (soil mois-
ture deficit induced cracking of clay-rich soil and bypass of the soil matrix).
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followed bymacro-scale weathering PAGs and their spatially correlated
proxies were the most sensitive predictors retained for the weathering
processes.

The performance of the hydrological, redox, and weathering
PAGs, to estimate spatial variability in hydrochemical facies, as
defined by the 12 surface water HCA clusters, was also strong
with a cross-validated R2 of 0.90 for both the user and machine
defined model runs. In both model runs, PAGs representing all
three dominant processes, were retained as significant predictors
reflecting the collective influence of each process over surface
water hydrochemical composition.

Although not tabulated, machine defined runs of conductivity (μS/
cm), major cations, SiO2, I, F, B, DIC, HCO3

– alkalinity, and SO4
2− exhibited

responses consistent with the process knowledge developed in Step 1
and achieved cross-validated R2 values of ≥0.85. Although model re-
sponses were consistent with process knowledge, the lower accuracy
of DO (R2 = ≤0.67) was probably due to re-equilibration of soil and
aquifer drainage with atmospheric oxygen within the stream channel,
a factor that is not accounted for by the PAGs.

3.3.2. Water quality
As PAGs were observed to adequately represent regional

hydrochemical process gradients, land use intensity (LUI) was subse-
quently incorporated and the ability to estimate spatial variation in
water quality assessed. User defined functions responded in a manner
consistent with process knowledge and produced cross-validated R2

values of 0.65 to 0.91, indicative of a moderate to very good estimation
of spatial variation in steady-statewater quality for Southland (Table 6).
For example, total nitrogen and total oxidised nitrogen increased across
the macro-scale ATM and RCD PAGs and decreased across the meso-
scale SRP and GRP PAGs (Appendix D).

Overall, machine defined runs once again produced less complex
and more accurate water quality models than user defined models (R2

0.72 to 0.92; Table 6). Machine defined models for particulate species,



826 C.W.F. Rissmann et al. / Science of the Total Environment 672 (2019) 815–833
E. coli (R2 = 0.72) and total suspended sediment (R2 = 0.73), were sig-
nificantly less complex andmore accurate than user definedmodels (R2

of 0.65 and 0.68, respectively). Varying degrees of spatial correlation be-
tween macro and meso and meso scale PAG and LUI was observed and
was readily interpretable (Appendix C). For example, LUI exhibits a rel-
atively strong positive correlation (r = 0.76 and 0.63) with the macro-
scale RCD andATMPAGs, respectively reflecting the controls of topogra-
phy and climate over the regional LUI gradient. Spatial correlation also
appears to be themain difference between theuser and themachinede-
fined models of water quality, with the inclusion and retention of finer
scale PAGs (e.g. BP, ART) and in some instances LUI in place of larger
scale redox, hydrological and weathering PAGs.

Land use intensity was retained as an important estimator for all
water quality measures except for total phosphorus and E. coli. In both
instances, ART appears to be a more sensitive predictor of high risk
areas for these water quality measures due to an inherent spatial corre-
lation with areas of intensive land use, drainage modification, and a
greater surficial runoff risk (% OLF).

4. Discussion

4.1. PoAM performance

Model evaluation indicates that PoAMwas effective at replicating the
actual process-attribute gradients that govern the hydrochemical evolu-
tion of surfacewater across the Southland province. A random forest eval-
uation of the performance of the macro-scale hydrological and meso-
scale redox andweathering PAGs for Southland drew a similar conclusion
(Snelder, 2016). The observation that spatial variation in hydrochemical
measures can be reliably estimated as a function of landscape attributes
is consistent with national and international studies (Johnson et al.,
1997; Hale et al., 2004; Snelder and Biggs, 2002; Snelder et al., 2004;
King et al., 2005; Dow et al., 2006; Becker et al., 2014). When spatial cor-
relationwas accounted for, there was little difference in the response and
performance of user defined versus machine definedmodels of the dom-
inant processes controlling hydrochemical evolution of surface water in
Table 6
User defined and machine defined water quality model and performance for dominant proces

User Functions User Defined Model R2 Comple

Nitrogen TN = f(SRP,
GRP, RCD,
ATM, BP, LUI)

TN = 0.15 + 0.15*ATM + 0.37*ATM^2 +
0.15*ATM^3 + exp(0.63*LUI) - 1.22*cos
(0.68*LUI^2*ATM^2*BP^3)

0.91 48

TON = f(LUI,
SRP, GRP,
ATM, RCD, BP)

TON = 0.75*LUI + 0.28*LUI^2 +
1.30*LUI*RCD*BP +LUI*BP*sin(0.75*
LUI*BP^2) - 1.53*LUI*sin(0.75*LUI*BP^2)

0.85 47

Phosphorus TP = f(LUI,
SRP, GRP, RCD,
ATM, DD, ART,
BP)

TP = sin(0.60 + 0.70*ART - ATM^2 -
0.42*ATM - 0.54*ART*ATM^2) -
0.60*LUI^2*sin(0.82*SRP*BP)

0.72 39

DRP = f(LUI,
SRP, GRP, RCD,
ATM, ART, BP)

DRP = 0.10*LUI*GRP + 0.10*SRP*BP +
sin(0.36*LUI + 0.16*GRP + 0.10*SRP +
0.36*LUI*BP + 0.17*GRP*BP^2) - 0.10 -
0.15*RCD

0.81 84

Sediment TSS = f(LUI,
RCD, ATM,
ART, DD, BP,
OLF)

TSS = (0.93 + 0.47*ART +
0.56*RCD*ATM - ATM^2 -
0.18*DD^2)/factorial(BP + ART*BP - 0.31
- BP*DD^2)

0.65 38

Microbes E. coli = f(LUI,
RCD, ATM,
ART, DD, BP,
OLF)

E. coli = (0.20 + 0.70*LUI +
0.70*ATM*ART - 0.70*RCD*BP)/cos
(0.24*ART*BP^2) - 0.75*ATM^2 -
0.17*RCD*ATM*ART

0.68 73

For detailed performance results see Appendix D. HCA = Hierarchical Cluster Analysis m
neutralisation capacity; GANC= geological acid neutralisation capacity; SRP= soil reduction p
(vertical soil profile drainage); LAT= lateral drainage (horizon permeable drainage); ART= ar
ture deficit induced cracking of clay-rich soil and bypass of the soil matrix).
Southland - supporting the rigour of the process level knowledge and in-
dicating that the generated PAGs reasonably replicated actual gradients.

The PoAM approach, when combinedwith a LUI gradient, also effec-
tively explained spatial variation in steady-state total nitrogen, total
oxidised nitrogen, total phosphorus, and dissolved reactive phosphorus
across the 93 surface water sites for Southland. Overall, machine de-
finedmodels of water quality provided less complex andmore accurate
estimates of spatial variation in water quality. Both user and machine
defined models of E. coli (R2 = 0.72) and total suspended sediment
(R2= 0.73)were the least accurate water quality indices. The lower ac-
curacy of models for the particulate species E. coli and total suspended
sediment may reflect: (i) failure to adequately represent important
PAGs; (ii) use of LUI gradients that are too coarse, and/or; (iii) the
need to normalise highly positively skewed water quality metrics by
flow prior to model evaluation and development. A recent application
of PoAMwithin theWaituna Lagoon catchment (c. 22,000 ha), Southland,
noted poor representation of enterprise type (e.g. agricultural versus con-
servation estate) at scales b300 ha, was a key source of estimation error
for particulate and particulate bound species (Pearson et al., 2018;
Rissmann et al., 2018b). Therefore, it is likely that improvements in the
spatial resolution of landscape attributes, LUI, and/or consideration of dif-
ferent statistical measures are required in order to providemore accurate
estimates of all water quality measures, especially particulate and partic-
ulate bound species.

In terms of model performance, bias is associated with the subset of
93 surface water monitoring sites, that for pragmatic reasons, are asso-
ciated with higher order streams (≥3) and larger drainage basin areas.
Specifically, 50% of the 93 capture zones are ≥70 km2, with only eight
b5 km2 (500 ha). This is relevant because most farms across Southland
range between 300 and 500 ha (Moran et al., 2017). Average farm size
globally is even smaller (Samberg et al., 2016). As such, the ability of
the PoAM approach to estimate water quality at property scales is cur-
rently unknown. This is important given that error within water quality
models tends to increase as drainage basin size decreases, reflecting in-
creasing sensitivity to the resolution, and hence accuracy, of landscape
attributes (Troy et al., 2008; Matott et al., 2009; Moriasi et al., 2015).
ses, Southland province, New Zealand.

xity Machine
Functions

Machine Defined Model R2 Complexity

TN = f(LUI, BP,
OLF, ATM)

TN = 0.058 + 0.60*LUI + 0.087*BP +
LUI*GRP*LAT*BP - LAT*sin
(0.60*LUI^3*BP^2) - 0.28*OLF -
0.22*LUI*OLF

0.92 42

TON = f(RCD,
LUI, BP)

TON = 0.68*LUI + RCD*BP + 0.24*LUI^2
+ 1.12*BP*RCD^2 + 0.16*BP^2*sin
(0.74*LUI*BP^2)

0.85 38

TP = f(ATM,
ART, GRP)

TP = 0.6836*ART*cos(ATM) + cos(ATM)
+ tan(0.2321*GRP^2) - 0.9595

0.84 52

DRP = f
(GANC,GRP,
BP, LUI, SRP)

DRP = 0.063*factorial(GANC) +
0.067*LUI*GANC^2 + BP/(0.93*factorial
(GANC) + SRP*cos(BP) + factorial(GRP))
- 0.36

0.81 41

TSS = f(ATM,
DD, BP, GRP,
SRP, RCD, LUI,
ART)

TSS = ATM*cos(SRP) + 2.311*cos(SRP)*
cos(DD)*cos(BP)*cos(1.392 +
RCD*GRP*DD) - 0.2832*LUI*ART

0.73 40

E. coli = f
(ATM, ART, BP,
LAT, GRP)

E. coli = 1.428*sin(0.3939 +
0.3079*ATM + 0.3079*GRP*ART -
0.3079*ATM*LAT) - 0.1168*BP -
0.2441*ART^2 - 0.5312*ATM^2

0.72 38

embership; ATM = atmospheric loading; RCD = recharge domain; SANC = soil acid
otential; GRP= geological reduction potential; OLF= overland flow; DD=deep drainage
tificial drainage (subsurface mole-pipe and open ditch drainage); BP= bypass (soil mois-
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The loss of accuracy at small scales is particularly relevant given most
geospatial layers used in the case study were only as fine as 1:50,000
scale, with finer scales often considered more appropriate for assessing
controls at property scales.

Options for extending the relevance of PoAM towards property and
paddock (b10 ha) scales include the use of passive (e.g. airborne gamma
ray spectroscopy) and remotely sensed datasets (e.g. MODIS: Moderate
Resolution Imaging Spectroradiometer satellite) that offer high resolu-
tion constraints over effective landscape properties (Beamish, 2014;
Wilford et al., 2016; Rissmann et al., 2018d). That higher resolution
and more accurate depiction of landscape attributes can be used to im-
prove the representation of PAGs is hardly surprising given that the
same dominant processes also drive hydrochemical and water quality
variation at small scales (Moldan and Černý, 1994; Clark and Fritz,
1997; James and Roulet, 2006; Inamdar, 2011; Tratnyek et al., 2012).

Overall, the validity and observed performance of the PoAM ap-
proach is supported by the ‘dominant process concept’ proposed by
Grayson and Bloschl (2000), namely:

(i) that the response of environmental systems is often well ex-
plained by the representation of a small number of dominant
processes, and;

(ii) that “a logical way to identify the dominant processes governing
a system is by evaluating the sensitivity of the system to each of
the individual processes (believed to have influence) through a
(high-order) multi-variable sensitivity analysis and selecting
those variables that are found to have a ‘noticeably significant in-
fluence” (Sivakumar, 2004, 2008).

4.2. Water quality and hydrochemical data needs

Collection of hydrochemical data for PoAM can be expensive, with
variable data-richness between catchments and provinces. To overcome
differences in data-richness, a top-down hydrochemical controlling fac-
tor approach can be utilised for data-poor areas, and a stronger hybrid
approach, PoAM, that incorporates hydrochemical measures for areas
with a greater number of monitoring points and associated repeatmea-
sures. The role of different landscape attributes over many of the key
hydrochemical and water quality measures is well established, and as
such, can be used to produce a reasonable proxy of likely PAGs, without
the need for large hydrochemical or water quality datasets. This allows
for targetedwater sampling,minimising the number of samples that are
required for model refinement and validation. Further, as the approach
is looking at process signals, historical water quality data is considered a
valuable source of process level information.

For example, application of the method to the Northland Region of
New Zealand resulted in comparable performance to that reported for
Southland for many of the same water quality measures (Rissmann
et al., 2018c, unpublished data). The latter lends support to the observa-
tion that a strong understanding of landscape controls over the domi-
nant processes governing water quality outcomes can be used to
produce a reasonable proxy of likely PAGs, without the need for large
hydrochemical or water quality datasets.

4.3. The influence of lagged contaminant transport

Water quality and compositional measures are by their nature a by-
product of the inherent properties of the landscape, which also includes
lags, so that any potential limitation is a factor of the currency and rep-
resentativeness (i.e. adequate sampling of flow range) of existing water
monitoring datasets, and the adequacy with which hydrological con-
nectivity has been mapped. The PoAM approach assesses hydrological
connectivity in terms of the sensitivity, response, and accuracy with
which the conservative hydrological tracers, volumetric (i.e. δ18O-H2O,
δ2H-H2O), and solute (e.g. Na+, Cl−, Br) were estimated across long-
termsurfacewatermonitoring sites. Themodel proposes that the ability
to accurately estimate spatial variation in hydrological tracers, espe-
cially solute tracers, is unambiguous evidence that hydrological connec-
tivity, and hence lags, have been sufficiently represented for dissolved
species. Any lags associated with stored particulate or particulate
bound species is not represented by the hydrological model.

5. Conclusion

Process-attribute mapping utilises process signals within water to
identify effective landscape attributes and to guide the classification of
the landscape via a hybrid controlling factor approach. Due to a focus on
mapping dominant process gradients (e.g. redox, hydrological), opposed
to a singular reaction (e.g. denitrification) or component process (e.g.
overland flow), PoAM accounts for multiple different water quality mea-
sures and is not limited by reliance upon poorly constrained coefficients
or ‘decay constants’ to represent transport and attenuation. The combina-
tion of PAGs with symbolic regression to produce explicit mathematical
models that describe spatial variation in hydrochemistry and water qual-
ity, offers greater transparency over both model response and the under-
lying drivers of spatial variability for multiple water quality measures.

The strong performance of PoAM to estimate a wide range of
hydrochemical and water quality measures highlights the importance of
landscape attributes over spatial variation in water composition. PAGs
provide a visual-spatial representation of the ‘effective’ attributes of the
landscape that mediate land use pressure and resulting water quality in
distinct, and yet predictable ways. As such, they can be used in conjunc-
tion with land use activity to communicate, at a dominant process and
landscape level, ‘how’ and ‘why’water quality varies spatially - a feature
that is highly valued by land users and resource managers (Duncan,
2016; Hughes et al., 2016; Pearson et al., 2018; Rissmann et al., 2018a).

Uncertainties associatedwith PoAM reflect the resolution of existing
geospatial layers typically created for purposes other thanwater quality
and that of the surface water monitoring network used for model eval-
uation. Both are particularly limiting for application at farm scales, al-
though the utilisation of higher resolution, passive or remotely sensed
data, offers an opportunity to overcome this limitation via the provision
of higher resolution maps of effective landscape attributes. The PoAM
approach does not currently include a transient component, although
this is a current focus of research along with the generation of higher
resolution depictions of effective landscape attributes.

Process-attribute mapping reveals the value of understanding the
relationship between the dominant processes controlling spatial varia-
tion in the hydrochemical evolution of water and in conjunction with
land use, water quality. As such, PoAM is considered to provide a
more realistic, transparent, accurate and accessible picture of the pro-
cesses governing spatial variability in hydrochemistry andwater quality
to land users and resource managers.
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Appendix A. Conceptual framework
The PoAM framework recognises that a single landscape attribute may drive spatial variation inmore than one PAG as is seen in the landscape attri-
bute ‘soil drainage class,’ which may be common to both soil zone redox potential (Klefoth et al., 2014; Killick et al., 2015; Clough et al., 2017;
Rissmann et al., 2018b) and the hydrological pathway taken by water across the land surface (McDowell et al., 2005; Lin, 2012; Pearson, 2015a,
2015b; Rissmann et al., 2018b). Therefore, processes may be spatially linked at the attribute level, although the relative steepness in process signals
may not be correlated across the same scale due to fundamental differences in processmechanics (e.g. microbiallymediated redox succession versus
saturation excess overland flow). Other attributes may be spatially independent (e.g. the electron donor abundance of geological units and topo-
graphic relief).
Spatial correlation also exists between inherent landscape attributes (e.g. slope and soil drainage class), and anthropogenic gradients such as
land cover and land use (Harmsworth, 1996; Lynn et al., 2009) and drainage modification (Pearson, 2015a). The challenges of discriminating
between ‘natural’ versus ‘anthropogenic’ influences over water quality measures are overcome in PoAM by combining PAGs from both inher-
ent landscape attributes (i.e. hydrology, redox and weathering) and anthropogenically influenced attributes (i.e. land use intensity and arti-
ficial drainage).
Solute gradients are considered the most appropriate basis for identifying and mapping the landscape attributes most critical to water quality
(Moldan and Černý, 1994; Clark and Fritz, 1997; Beyer et al., 2016a; Rissmann et al., 2018b, 2018c). Given a small volume of water with a high solute
load (e.g. NO3

− or Cl−) may rapidly overwhelm the solute concentration of very dilute (e.g. alpine sourced) waters, and yet result in little change in
the signature of volumetric tracers (i.e., δ18O-H2O and δ2H-H2O).

Appendix B. Process-attribute gradient descriptions and response
The atmospheric PAG depicts regional gradients in marine aerosol load and the δ18O-H2O/δ2H-H2O prior to redistribution by the hydrological
network (Baisden et al., 2016; Rodway et al., 2016). Marine aerosol load decays exponentially with distance from the coast and altitude and
δ18O-H2O becomes progressively more negative (Rodway et al., 2016; Fig. 4a). Atmospheric gradients are steepest where elevation increases
rapidly over a short lateral distance (e.g. west coast of Fiordland). The recharge domain PAG depicts the redistribution and temporary storage
of water by the hydrological network (Beyer et al., 2016a; Rissmann et al., 2018a). This includes hydrological tracer distinct source water do-
mains, between and within domain hydrological connectivity, surface and shallow aquifer connectivity and associated dilution potential
(Fig. 4b; Beyer et al., 2016a).
In areas of intensive land use, overland flow is often associatedwith a disproportionally large contaminant load to surfacewaterways, especially sed-
iment, phosphorus and microbes (Smith and Monaghan, 2003; Curran Cournane et al., 2011; Goldsmith and Ryder, 2013; Orchiston et al., 2013;
Rissmann et al., 2018b). Across Southland however, percent precipitation is most prevalent pathway across alpine and subalpine recharge domains
(Pearson, 2015b; Rissmann et al., 2016a). These areas aremostly characterised by natural state land cover and as such are considered ‘source limited’
and exhibit little, if any, evidence of anthropogenic impact (Fig. 4c and 1). Percent OLF occurring within developed hill country or lowland recharge
domains, although constituting a smaller area, poses the greatest risk to water quality due to higher land use intensity and low dilution potential
(Hughes et al., 2016; Pearson et al., 2018; Rissmann et al., 2018b).
Deep drainage, BP, LAT and ART constitute different pathways water takes through the soil zone (Pearson, 2015a, 2015b; Beyer et al., 2016b). Deep
drainage is highest across areas of gravely silt loam soils with moderate to rapid permeability where imperfect drainage, textural contrasts, pan for-
mation or shallow bedrock is largely absent (Fig. 4d and e; Pearson, 2015a, 2015b; Rissmann et al., 2016c, 2016d, 2016e). In agricultural areas, im-
perfectly drained soils (low deep drainage) and high lateral flow (horizon permeable flow) are most often artificially drained providing an artificial
conduit for contaminates to bypass the soil matrix (Fig. 4f; Pearson, 2015a; Rissmann et al., 2018b). In areas of high LUI, BPmediated by shrink-swell
clays (Fig. 4b) and high ART result in higher concentrations of contaminants entering both shallow aquifers and the surface water network
(Houlbrooke and Monaghan, 2009; Beyer et al., 2016a; Hughes et al., 2016; Rissmann et al., 2018b).
The redox and weathering processes are comprised of separate soil and geological PAGs (Figs. 5 and 6; Beyer et al., 2016b). The soil PAG overlies the
geological PAG, except where bedrock outcrops (Rissmann et al., 2016a). Across the lowland areas of the Southland province, the geological PAGs
represent the upper portion of the unconfined aquifer system (Rissmannet al., 2016a). Oxic rechargewaters are associatedwith areas ofwell drained
soils (deep drainage) and alluvial gravel aquifers, whilst recharge from imperfectly drained and organic soils is reducing (Killick et al., 2015; Beyer
et al., 2016b; Beyer and Rissmann, 2016). Permeable, unconfined aquifer systems composed of Quaternary gravels and/or fractured rock with low
organic carbon content (electron donor abundance) tend to be strongly oxidising, whilst poorly permeable and/or carbon rich aquifers tend to be
reducing (Rissmann, 2011; Beyer et al., 2016b; Rissmann et al., 2018b). Hill country streams have a mixed oxic-anoxic (see Jürgen et al., 2009)
redox signature due to thin, often organic carbon rich soils, that overlie poorly permeable bedrock. Here seasonal saturation at the contactwith poorly
permeable bedrock results in reducing soil waters (Fig. 5a; Rissmann et al., 2016c, 2016d). Where reducing, clay-rich soils crack in response to soil
moisture deficit aquifer recharge bypasses (BP) the reducing soil matrix transporting oxidised waters to the underlying aquifer (Beyer et al., 2016b;
Hughes et al., 2016; Rissmann et al., 2016g).
The ANC of soil (SANC) and geological (GANC) materials reflect the abundance of Lewis bases and the degree of weathering of the substrate (Fig. 6;
Rissmann et al., 2016a; Rissmann et al., 2018b).Within a recharge domain, alkalinity, pH and base cation concentrations increase as the ANC of soil or
underlying geology increases (Rissmann et al., 2016b, 2016c, 2016d, 2016e, 2016f; Rissmann et al., 2018b).

Appendix C. Process-attribute gradient and land use intensity correlation matrix

Table C.1
Pearson correlation matrix using pairwise significance test (α = 0.05) for 93 long-term monitoring sites from Southland province, New Zealand.
LU

R

A

LUI
 RCD
 ATM
 SANC
 GANC
 SRP
 GRP
 OLF
 DD
 LAT
 ART
 BP
I

Pearson r
 1
 0.7546
 0.6335
 0.2254
 −0.1970
 −0.3586
 −0.3761
 −0.8023
 0.6965
 −0.6639
 0.6355
 0.4248

p (2-tailed)
 –
 b0.0001
 b0.0001
 0.0298
 0.0584
 0.0004
 0.0002
 b0.0001
 b0.0001
 b0.0001
 b0.0001
 b0.0001
CD

Pearson r
 0.7546
 1
 0.8942
 −0.1374
 −0.4774
 0.0525
 0.1718
 −0.7420
 0.4607
 −0.4137
 0.7679
 0.3145

p (2-tailed)
 b0.0001
 –
 b0.0001
 0.1891
 b0.0001
 0.6169
 0.0996
 b0.0001
 b0.0001
 b0.0001
 b0.0001
 0.0021
TM

Pearson r
 0.6335
 0.8942
 1
 −0.3681
 −0.6122
 0.0985
 0.2564
 −0.7051
 0.3244
 −0.3036
 0.7333
 0.1606

p (2-tailed)
 b0.0001
 b0.0001
 –
 0.0003
 b0.0001
 0.3477
 0.0131
 b0.0001
 0.0015
 0.0031
 b0.0001
 0.1241
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able C.1 (continued)
SA

G

SR

G

O

D

LA

A

B

H

R

W

H

LUI
 RCD
 ATM
 SANC
 GANC
 SRP
 GRP
 OLF
 DD
 LAT
 ART
 BP
NC

Pearson r
 0.2254
 −0.1374
 −0.3681
 1
 0.4449
 −0.2307
 −0.4356
 0.0212
 0.2492
 −0.2278
 −0.2316
 0.3465

p (2-tailed)
 0.0298
 0.1891
 0.0003
 –
 b0.0001
 0.0261
 b0.0001
 0.8399
 0.0160
 0.0281
 0.0255
 0.0007
ANC

Pearson r
 −0.1970
 −0.4774
 −0.6122
 0.4449
 1
 −0.1197
 −0.5045
 0.5108
 −0.0302
 0.0337
 −0.4776
 0.1471

p (2-tailed)
 0.0584
 b0.0001
 b0.0001
 b0.0001
 –
 0.2531
 b0.0001
 b0.0001
 0.7736
 0.7481
 b0.0001
 0.1595
P

Pearson r
 −0.3586
 0.0525
 0.0985
 −0.2307
 −0.1197
 1
 0.6514
 0.1733
 −0.7846
 0.8189
 0.0767
 0.0864

p (2-tailed)
 0.0004
 0.6169
 0.3477
 0.0261
 0.2531
 –
 b0.0001
 0.0966
 b0.0001
 b0.0001
 0.4648
 0.4102
RP

Pearson r
 −0.3761
 0.1718
 0.2564
 −0.4356
 −0.5045
 0.6514
 1
 −0.0510
 −0.5340
 0.5554
 0.2126
 −0.1763

p (2-tailed)
 0.0002
 0.0996
 0.0131
 b0.0001
 b0.0001
 b0.0001
 –
 0.6272
 b0.0001
 b0.0001
 0.0407
 0.0910
LF

Pearson r
 −0.8023
 −0.7420
 −0.7051
 0.0212
 0.5108
 0.1733
 −0.0510
 1
 −0.4435
 0.4100
 −0.7556
 −0.3031

p (2-tailed)
 b0.0001
 b0.0001
 b0.0001
 0.8399
 b0.0001
 0.0966
 0.6272
 –
 b0.0001
 b0.0001
 b0.0001
 0.0031
D

Pearson r
 0.6965
 0.4607
 0.3244
 0.2492
 −0.0302
 −0.7846
 −0.5340
 −0.4435
 1
 −0.9874
 0.1665
 0.0561

p (2-tailed)
 b0.0001
 b0.0001
 0.0015
 0.0160
 0.7736
 b0.0001
 b0.0001
 b0.0001
 –
 b0.0001
 0.1106
 0.5935
T

Pearson r
 −0.6639
 −0.4137
 −0.3036
 −0.2278
 0.0337
 0.8189
 0.5554
 0.4100
 −0.9874
 1
 −0.1444
 −0.0293

p (2-tailed)
 b0.0001
 b0.0001
 0.0031
 0.0281
 0.7481
 b0.0001
 b0.0001
 b0.0001
 b0.0001
 –
 0.1672
 0.7802
RT

Pearson r
 0.6355
 0.7679
 0.7333
 −0.2316
 −0.4776
 0.0767
 0.2126
 −0.7556
 0.1665
 −0.1444
 1
 0.4023

p (2-tailed)
 b0.0001
 b0.0001
 b0.0001
 0.0255
 b0.0001
 0.4648
 0.0407
 b0.0001
 0.1106
 0.1672
 –
 0.0001
P

Pearson r
 0.4248
 0.3145
 0.1606
 0.3465
 0.1471
 0.0864
 −0.1763
 −0.3031
 0.0561
 −0.0293
 0.4023
 1

p (2-tailed)
 b0.0001
 0.0021
 0.1241
 0.0007
 0.1595
 0.4102
 0.0910
 0.0031
 0.5935
 0.7802
 0.0001
 –
Correlation is significant at the 0.05 level (2-tailed). LUI = land use intensity; ATM= atmospheric loading; RCD= recharge domain; SANC= soil acid neutralisation capacity; GANC =
geological acid neutralisation capacity; SRP = soil reduction potential; GRP = geological reduction potential; OLF = overland flow; DD= deep drainage (vertical soil profile drainage);
LAT= lateral drainage (horizon permeable drainage); ART = artificial drainage (subsurface mole-pipe and open ditch drainage); BP = bypass (soil moisture deficit induced cracking of
clay-rich soil and bypass of the soil matrix).

Appendix D. Hydrochemical and water quality response and performance
Table D.1

User defined hydrochemical model performance for dominant processes, Southland province, New Zealand.
Dominant processes
 User defined functions
 PAG
 Sensitivity
 Positive
(%)
Positive
mag.
Negative
(%)
Negative
mag.
R2
 r
 ME
 MSE
 MAE
 Coeff.
 Complexity
ydrology
Cl = f(ATM, RCD)

ATM
 1.33
 100%
 1.33
 0%
 0.00
 0.94
 0.97
 0.83
 0.05
 0.15
 8
 43

RCD
 0.45
 100%
 0.45
 0%
 0.00
Na = f(ATM, RCD)

ATM
 2.06
 100%
 2.06
 0%
 0.00
 0.95
 0.97
 0.93
 0.05
 0.15
 8
 45

RCD
 0.38
 100%
 0.38
 0%
 0.00
Br = f(ATM, RCD)

RCD
 0.75
 100%
 0.75
 0%
 0.00
 0.75
 0.87
 1.62
 0.27
 0.34
 4
 33

ATM
 0.65
 100%
 0.65
 0%
 0.00
δ18O-H2O = f(ATM, RCD)

ATM
 1.34
 100%
 1.34
 0%
 0.00
 0.93
 0.97
 0.70
 0.07
 0.20
 6
 35

RCD
 0.31
 100%
 0.31
 0%
 0.00
δ2H-H2O = f(ATM, RCD)

ATM
 1.20
 99%
 1.22
 1%
 0.19
 0.94
 0.97
 0.81
 0.06
 0.19
 7
 41

RCD
 0.13
 100%
 0.13
 0%
 0.00
δ13C-DIC = f(ATM, RCD)

ATM
 2.35
 33%
 1.45
 67%
 2.78
 0.79
 0.89
 1.39
 0.19
 0.29
 7
 38

RCD
 0.45
 0%
 0.00
 100%
 0.45
edox
DO = f(SRP, GRP, ATM,
RCD, BP)
BP
 1.02
 35%
 0.88
 65%
 1.10
 0.56
 0.75
 1.82
 0.33
 0.37
 7
 46

GRP
 0.65
 53%
 0.59
 47%
 0.72

SRP
 0.17
 48%
 0.14
 52%
 0.20

RCD
 0.13
 64%
 0.14
 36%
 0.11

ATM
 Not retained by model
Mn2+ = f(SRP, GRP, ATM,
RCD, BP)
ATM
 1.00
 81%
 1.17
 19%
 0.30
 0.87
 0.94
 0.72
 0.08
 0.21
 6
 29

SRP
 0.43
 81%
 0.31
 19%
 0.96

GRP
 0.24
 100%
 0.24
 0%
 0.00

BP
 0.22
 100%
 0.22
 0%
 0.00

RCD
 Not retained by model
Fe2+ = f(SRP, GRP, ATM,
RCD, BP)
ATM
 1.04
 100%
 1.04
 0%
 0.00
 0.83
 0.91
 2.07
 0.13
 0.21
 8
 45

SRP
 0.13
 100%
 0.13
 0%
 0.00

BP
 0.10
 34%
 0.01
 66%
 0.14

RCD
 0.04
 0%
 0.00
 100%
 0.04

GRP
 Not retained by model
DOC = f(SRP, GRP, ATM,
RCD)
ATM
 6.83
 100%
 6.83
 0%
 0.00
 0.94
 0.97
 0.64
 0.03
 0.12
 8
 32

RCD
 0.43
 100%
 0.43
 0%
 0.00

GRP
 0.08
 56%
 0.06
 44%
 0.17

SRP
 0.01
 100%
 0.01
 0%
 0.00
eathering
pH = f(SANC, GANC, RCD,
ATM)
GANC
 0.31
 46%
 0.34
 54%
 0.27
 0.79
 0.89
 0.60
 0.04
 0.15
 9
 50

RCD
 0.18
 100%
 0.18
 0%
 0.00

SANC
 0.17
 100%
 0.51
 0%
 0.00

ATM
 b0.001
 0%
 0.00
 100%
 b0.001
Total alkalinity = f(SANC,
GANC, RCD, ATM)
RCD
 0.62
 100%
 0.62
 0%
 0.00
 0.81
 0.90
 1.87
 0.14
 0.26
 7
 40

GANC
 0.38
 46%
 0.32
 54%
 0.43

SANC
 0.25
 100%
 0.25
 0%
 0.00

ATM
 Not retained by model
ydrochemical facies (HCA
membership)
HCA# = f(SRP, ATM, GRP,
SANC, GANC)
RCD
 0.62
 100%
 0.62
 0%
 0.00
 0.90
 0.95
 0.97
 0.11
 0.21
 5
 37

ATM
 0.32
 100%
 0.32
 0%
 0.00

GANC
 0.20
 0%
 0.00
 100%
 0.00

GRP
 0.05
 0%
 0.00
 100%
 0.05

SRP
 Not retained by model
(continued on next page)
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able D.1 (continued)
Dominant processes
H

R

W

User defined functions
 PAG
 Sensitivity
 Positive
(%)
Positive
mag.
Negative
(%)
Negative
mag.
R2
 r
 ME
 MSE
 MAE
 Coeff.
 Complexity
SANC
 Not retained by model

If bypass is included model performance in terms of accuracy and complexity are similar but only RCD N BP N GANC N GRP are retained.
where R2 = cross-validated goodness of fit; r = correlation coefficient; ME = maximum error; MSE = mean squared error; MAE= mean absolute error; Coeff. = the number of coef-
ficients retained by the model; Complexity = the complexity of the model; ATM = atmospheric loading; RCD = recharge domain; SANC = soil acid neutralisation capacity; GANC =
geological acid neutralisation capacity; SRP = soil reduction potential; GRP = geological reduction potential; OLF = overland flow; DD= deep drainage (vertical soil profile drainage);
LAT= lateral drainage (horizon permeable drainage); ART = artificial drainage (subsurface mole-pipe and open ditch drainage); BP = bypass (soil moisture deficit induced cracking of
clay-rich soil and bypass of the soil matrix).
Table D.2

Machine defined hydrochemical model performance for dominant processes, Southland province, New Zealand.
Process family
 Water
quality
measure
PAG retained
by model
Sensitivity
 Positive
(%)
Positive
magnitude
Negative
(%)
Negative
magnitude
R2
 r
 ME
 MSE
 MAE
 Coefficients
 Complexity
ydrology
Na+

ATM
 1.630
 100%
 1.630
 0%
 0.000
 0.96
 0.98
 0.60
 0.04
 0.15
 5
 31

RCD
 0.520
 100%
 0.520
 0%
 0.000

SRP
 0.090
 100%
 0.090
 0%
 0.000
Cl−
 ATM
 0.670
 100%
 0.670
 0%
 0.000
 0.96
 0.98
 0.82
 0.04
 0.13
 6
 31

RCD
 0.460
 100%
 0.460
 0%
 0.000

BP
 0.370
 0%
 0.000
 100%
 0.370

SRP
 0.160
 55%
 0.150
 45%
 0.170

GRP
 0.040
 0%
 0.000
 100%
 0.040
Br−
 ATM
 0.930
 100%
 0.930
 0%
 0.000
 0.91
 0.95
 1.37
 0.10
 0.20
 6
 27

SRP
 0.270
 0%
 0.000
 100%
 0.270

BP
 0.007
 100%
 0.007
 0%
 0.132

GANC
 0.005
 100%
 0.005
 0%
 0.067

LUI
 0.001
 100%
 0.001
 0%
 0.011
δ18O-H2O
 ATM
 0.810
 100%
 0.810
 0%
 0.000
 0.95
 0.98
 0.64
 0.05
 0.16
 6
 31

RCD
 0.200
 100%
 0.200
 0%
 0.000

BP
 0.190
 100%
 0.190
 0%
 0.000

LUI
 0.160
 0%
 0.000
 100%
 0.160
δ2H-H2O
 ATM
 1.110
 100%
 1.110
 0%
 0.000
 0.96
 0.98
 0.62
 0.04
 0.15
 7
 43

RCD
 0.280
 100%
 0.280
 0%
 0.000

LUI
 0.200
 0%
 0.000
 100%
 0.200

BP
 0.110
 0%
 0.000
 100%
 0.110

OLF
 0.060
 100%
 0.060
 0%
 0.009
δ13C-DIC
 LUI
 0.813
 0%
 0.000
 100%
 0.813
 0.83
 0.91
 1.21
 0.14
 0.26
 5
 31

SANC
 0.540
 100%
 0.540
 0%
 0.000

ART
 0.330
 49%
 0.266
 51%
 0.393

BP
 0.198
 0%
 0.000
 100%
 0.198

SRP
 0.110
 42%
 0.110
 58%
 0.109

DD
 0.045
 59%
 0.053
 41%
 0.034
edox
DO
SANC
 0.275
 56%
 0.269
 44%
 0.282
 0.67
 0.82
 1.50
 0.19
 0.31
 4
 39

BP
 0.207
 4%
 0.056
 96%
 0.213

SRP
 0.172
 100%
 0.172
 0%
 0.000

ART
 0.101
 0%
 0.000
 100%
 0.101

GRP
 0.061
 0%
 0.000
 100%
 0.061

OLF
 0.037
 0%
 0.000
 100%
 0.037

ATM
 0.027
 0%
 0.000
 100%
 0.027

GANC
 0.023
 0%
 0.000
 100%
 0.023

LUI
 0.012
 100%
 0.012
 0%
 0.000
MnII
 ART
 0.658
 100%
 0.658
 0%
 0.000
 0.86
 0.93
 1.16
 0.117
 0.24
 8
 38

ATM
 0.493
 100%
 0.493
 0%
 0.000

GRP
 0.435
 59%
 0.314
 41%
 0.611

LUI
 0.282
 37%
 0.233
 63%
 0.310

BP
 0.214
 0%
 0.000
 100%
 0.214
FeII
 ATM
 0.655
 100%
 0.655
 0%
 0.000
 0.84
 0.92
 1.48
 0.12
 0.20
 7
 83

GRP
 0.278
 100%
 0.278
 0%
 0.000

ART
 0.278
 100%
 0.278
 0%
 0.000

SANC
 0.248
 59%
 0.260
 41%
 0.232

LUI
 0.062
 0%
 0.000
 100%
 0.062

BP
 0.042
 100%
 0.042
 0%
 0.000
DOC
 SANC
 0.480
 0%
 0.000
 100%
 0.480
 0.92
 0.96
 1.19
 0.06
 0.14
 5
 31

RCD
 0.394
 100%
 0.394
 0%
 0.486

OLF
 0.100
 0%
 0.000
 100%
 0.100

ATM
 0.084
 45%
 0.008
 55%
 0.145

GRP
 0.011
 73%
 0.008
 27%
 0.017
eathering
 pH
GRP
 0.536
 74%
 0.365
 26%
 1.031
 0.79
 0.89
 0.74
 0.08
 0.21
 6
 40

SANC
 0.347
 100%
 0.347
 0%
 0.000

OLF
 0.314
 100%
 0.314
 0%
 0.000

BP
 0.136
 0%
 0.000
 100%
 0.136

ART
 0.124
 0%
 0.000
 100%
 0.124

ATM
 0.079
 0%
 0.000
 100%
 0.079
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able D.2 (continued)
Process family
H

To

To

To

D

E.

To
Water
quality
measure
PAG retained
by model
Sensitivity
 Positive
(%)
Positive
magnitude
Negative
(%)
Negative
magnitude
R2
 r
 ME
 MSE
 MAE
 Coefficients
 Complexity
Total
alkalinity
BP
 2.056
 74%
 1.887
 26%
 2.540
 0.90
 0.95
 0.94
 0.07
 0.16
 9
 41

ATM
 0.057
 100%
 0.057
 0%
 0.000

RCD
 0.056
 100%
 0.056
 0%
 0.000

GANC
 0.052
 100%
 0.052
 0%
 0.000

ART
 0.032
 48%
 0.037
 52%
 0.028
ydrochemical
cluster
membership
Cluster
membership
ATM
 0.418
 100%
 0.418
 0%
 0.000
 0.90
 0.95
 1.04
 0.10
 0.19
 6
 34

ART
 0.325
 91%
 0.340
 9%
 0.163

LUI
 0.256
 99%
 0.259
 1%
 0.254

BP
 0.025
 100%
 0.025
 0%
 0.000

GANC
 0.023
 100%
 0.023
 0%
 0.000

GRP
 0.007
 100%
 0.007
 0%
 0.000
where R2 = cross-validated goodness of fit; r = correlation coefficient; ME = maximum error; MSE = mean squared error; MAE= mean absolute error; Coeff. = the number of coef-
ficients retained by the model; Complexity = the complexity of the model; ATM = atmospheric loading; RCD = recharge domain; SANC = soil acid neutralisation capacity; GANC =
geological acid neutralisation capacity; SRP = soil reduction potential; GRP = geological reduction potential; OLF = overland flow; DD= deep drainage (vertical soil profile drainage);
LAT= lateral drainage (horizon permeable drainage); ART = artificial drainage (subsurface mole-pipe and open ditch drainage); BP = bypass (soil moisture deficit induced cracking of
clay-rich soil and bypass of the soil matrix).
Table D.3

Machine defined water quality model performance, Southland province, New Zealand.
Water Quality Measure
 PAG Retained by
Model
Sensitivity
 Positive
(%)
Positive
Magnitude
Negative
(%)
Negative
Magnitude
R2
 r
 ME
 MSE
 MAE
 Coeff.
 Complexity
tal Nitrogen (TN)
 DD
 4.95
 100%
 4.95
 0%
 0.00
 0.89
 0.95
 1.05
 0.09
 0.22
 7
 39

BP
 4.25
 100%
 4.25
 0%
 0.00

OLF
 0.72
 0%
 0.00
 100%
 0.72

LUI
 0.43
 100%
 0.43
 0%
 0.00
tal Oxidisable Nitrogen
(TON)
LAT
 0.50
 0%
 0.00
 100%
 0.50
 0.87
 0.94
 1.44
 0.12
 0.21
 6
 31

BP
 0.46
 100%
 0.46
 100%
 0.00

LUI
 0.32
 100%
 0.32
 100%
 0.00
tal Phosphorus (TP)
 ATM
 1.08
 46%
 1.17
 54%
 1.00
 0.84
 0.92
 1.43
 0.10
 0.21
 7
 52

ART
 0.69
 100%
 0.69
 0%
 0.00

GRP
 0.49
 24%
 1.10
 76%
 0.30
issolved Reactive
Phosphorus (DRP)
GANC
 1.43
 36%
 1.66
 64%
 1.30
 0.81
 0.90
 1.10
 0.04
 0.13
 4
 41

GRP
 1.39
 14%
 5.42
 86%
 0.74

BP
 0.80
 100%
 0.80
 0%
 0.00

LUI
 0.18
 100%
 0.18
 0%
 0.00

SRP
 0.18
 100%
 0.18
 0%
 0.00
coli (MPN)
 ATM
 1.38
 60%
 1.74
 40%
 0.86
 0.72
 0.85
 1.74
 0.20
 0.31
 8
 38

ART
 0.67
 49%
 0.72
 51%
 0.62

BP
 0.15
 0%
 0.00
 100%
 0.15

LAT
 0.13
 97%
 0.14
 3%
 0.01

GRP
 0.07
 0%
 0.00
 100%
 0.07
tal Suspended Sediment
(TSS)
ATM
 0.86
 100%
 0.86
 0%
 0.00
 0.73
 0.86
 1.53
 0.20
 0.31
 3
 40

DD
 0.25
 43%
 0.27
 57%
 0.24

BP
 0.23
 63%
 0.20
 37%
 0.30

GRP
 0.19
 4%
 0.06
 96%
 0.19

SRP
 0.17
 56%
 0.17
 44%
 0.16

RCD
 0.08
 9%
 0.05
 91%
 0.08

LUI
 0.04
 100%
 0.04
 0%
 0.00

ART
 0.001
 100%
 0.001
 0%
 0.00
Where R2 = cross-validated goodness of fit; r = correlation coefficient; ME = maximum error; MSE = mean squared error; MAE = mean absolute error; Coeff. = the number of coefficients
retained by the model; Complexity = the complexity of the model; LUI = land use intensity; ATM = atmospheric loading; RCD = recharge domain; SANC = soil acid neutralisation capacity;
GANC= geological acid neutralisation capacity; SRP= soil reduction potential; GRP= geological reduction potential; OLF= overland flow; DD= deep drainage (vertical soil profile drainage);
LAT= lateral drainage (horizon permeable drainage); ART= artificial drainage (subsurface mole-pipe and open ditch drainage); BP= bypass (soil moisture deficit induced cracking of clay-rich
soil and bypass of the soil matrix).
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